8. Entropy and Spike Train

Chang Yunseo

2023.11.14

8-1 Entropy and Mutual Information

How much does the neural response tell us about the stimulus?

- Quantitatively
- What forms of Neural response are optimal

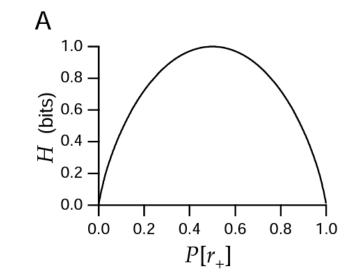
Information Theory

- Information Theory: Quantifying the ability of a coding scheme or a communication channel to convey information (stochastic & noisy process)
- Entropy: a measure of the theoretical capacity of a code to convey information
- Mutual information: how much of that capacity is actually used when the code is employed to describe a particular set of data

- Symbol: neuronal response / data: stimulus
- Simplified descriptions of the response of a neuron that reduce the number of possible symbols that need to be considered

Entropy

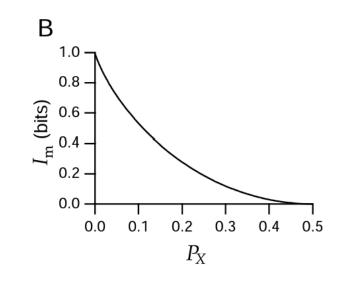
- Large range of different responds \rightarrow interesting (irregular / unpredictable)
- observing a response spike-count rate r with possibility P[r]
- Entropy \rightarrow surprise: $h(P[r]) = -log_2(P[r])$
- : 1) decrease function. 2) $h(P[r_1]P[r_2]) = h(P[r_1]) + h(P[r_2])$ 3) information bits
- Total Entropy $H = -\sum P[r] \log_2(P[r])$
- Same rate $\rightarrow P[r] = 0 \text{ or } 1$
- Have Two possible rate $\rightarrow P[r_1] = P[r_2] = \frac{1}{2}$



Mutual information

What we can measure

- Different stimuli \rightarrow Neural response different (does it correlate?)
- Mutual info: total response entropy average response entropy on trials involving different stimulus
- $H_s = -\sum P[r|s] \log_2 P[r|s]$, $H_{noise} = \sum H_s P[s]$
- $I_m = \sum P[r, s] \log_2 \frac{P[r, s]}{P[r]P[s]}$ symmetric between r,s
- $\log_2 P[s|r]$: reduce total stimulus entropy
- $I_m = 1 + (1 P_X) \log_2(1 P_X) + P_X \log_2 P_X$



Mutual information

- Kullback-Leibler divergence
- $D_{KL}(P,Q) = \sum P[r] \log_2 \frac{P[r]}{Q[r]}$
- Normally associated with a distance measure, $D_{KL} \ge 0$, $D_{KL} = 0$ only at P = Q
- Kullback-Leibler divergence between P[r, s] P[r]P[s]

Continuous variables

- $H = -\sum p[r]\Delta r \log_2(p[r]\Delta r) = -\sum p[r]\Delta r \log_2(p[r]) \log_2 \Delta r$
- $\Delta r \rightarrow 0, H \rightarrow \infty$: continuous variable measured with perfect accuracy ∞ entropy
- $\lim_{\Delta r \to 0} (H + \log_2 \Delta r) = -\int dr \ p[r] \log_2 p[r]$ Δr : limit of resolution
- $\lim_{\Delta r \to 0} (H_{noise} + \log_2 \Delta r) = \int ds \int dr \, p[s] \, p[r|s] \log_2 p[r|s]$
- $I_m = \int ds \int dr \, p[s] \, p[r|s] \log_2 \frac{p[r|s]}{p[r]}$

8-2 Information and Entropy

Maximization

Entropy maximization for a Single neuron

• Maximum firing rate r_m

•
$$\int_0^{r_m} dr \, p[r] = 1$$
, maximize $-\int_0^{r_m} dr \, p[r] \log_2 p[r] \rightarrow$ Lagrange multiplier

•
$$p[r] = \frac{1}{r_m} \rightarrow H = \log_2 \frac{r_m}{\Delta r}$$
 Let $r = f(s)$

•
$$p[r]|\Delta r| = \frac{|f(s+\Delta s)-f(s)|}{r_m} = p[s]\Delta s$$
, $\frac{df}{ds} = r_m p[s]$

•
$$f(s) = r_m \int_s^{s_m} ds' p[s']$$

Populations of Neurons

- Use vector $\vec{r} = (r_1, \cdots, r_N)$
- $H = -\int d\vec{r} \, p[\vec{r}] \log_2 p[\vec{r}] N \log_2 \Delta r$
- Consider $p[r_a] = \int \prod_{b \neq a} dr_b p[\vec{r}]$
- $H_a = -\int d\vec{r} \, p[\vec{r}] \, \log_2 p[r_a] \log_2 \Delta r$, $H \leq \sum_a H_a$
- $\sum_{a} H_{a} H = \int d\vec{r} \, p[\vec{r}] \, \log_2 \frac{p[\vec{r}]}{\prod_{a} p[r_{a}]}$: KL divergence

Populations of Neurons

- Entropy difference \rightarrow redundancy
- To achieve Maximum population-response entropy..
- 1) Individual neurons must response independently
- 2) Have response probabilities that are optimized for whatever constraints are imposed
- $p[r_a]$ identical

Populations of Neurons

- Covariance matrix : $Q_{ab} = \int d\vec{r} \, p[\vec{r}](r_a \langle r \rangle)(r_b \langle r \rangle) = \sigma_r^2 \delta_{ab}$
- Fix the covariance matrix, maximizes the entropy only if the statistics of the responses are gaussian

Application to Retinal Ganglion Cell Receptive Field

- Receptive field in Retina, LGN, primary visual cortex
- Maximize the amount of information that the associated neural responds convey about natural visual scenes in the presence of noise
- Only represent neural responds

Application to Retinal Ganglion Cell Receptive Field

- $L(t) = \int_0^\infty d\tau \int d\vec{x} D(\vec{x}, \tau) s(\vec{x}, t \tau)$: linear estimation of the response of visual neuron.
- Contrast function $s(\vec{x}, t)$, space time receptive field $D(\vec{x}, \tau) = D_s(\vec{x})D_t(\tau)$
- $L_s = \int d\vec{x} D_s(\vec{x}) s_s(\vec{x}) \quad L_t(t) = \int_0^\infty d\tau D_t(\tau) s_t(t-\tau)$
- D: information carrying capacity
- All locations and directions are equivalent \rightarrow same spatial structure

Application to Retinal Ganglion Cell ReceptiveField

- $L(\vec{a}) = \int d\vec{x} \ D_s(\vec{x} \vec{a})s_s(\vec{x})$
- We proceed as if there were a neuron corresponding to every continuous value of *a*.
 This allows us to treat L(*a*) as a function of *a* and to replace sums over neurons with integrals over *a*.

Spike Train and Poisson

distribution

Spike train

- A sequence of recorded times at which a neuron fires an action potential
- $100 \text{mV} \text{ over } 1 \sim 2 \text{ms} \rightarrow \text{ each time can be considered by a single point}$

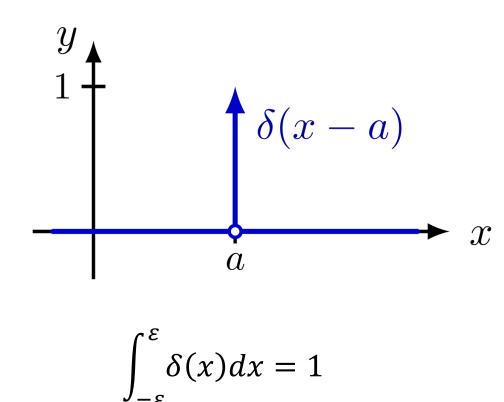
$$FR = \frac{\text{number of spikes}}{\Delta t}$$

$$FR(t|x_t) = \lim_{\Delta t \to 0} \frac{P(\text{spike in } (t, t + \Delta t)|x_t)}{\Delta t}.$$

Example of a spike train. Graph A shows the recorded stimulus and graph B shows the recorded actions potentials during the stimulus.

Spike train

• Delta function



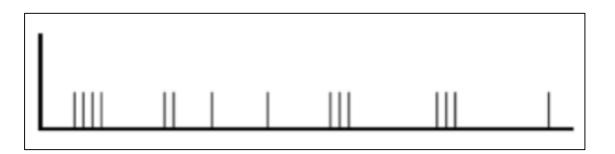
$$S(t) = \sum_{k} \delta(t - t^{k})$$

Average number of spike trains per time

$$r = \langle S(t) \rangle = \lim_{T \to +\infty} \frac{1}{T} \int_0^T S(t) dt$$

Poisson Distribution

 discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event.



$$f(k; \lambda) = \Pr(X=k) = \frac{\lambda^k e^{-\lambda}}{k!},$$

 $\lambda = \operatorname{E}(X) = \operatorname{Var}(X).$
 $P(k \text{ events in interval } t) = \frac{(rt)^k e^{-rt}}{k!}$
Average rate: r

Example

버스가 랜덤 하게 도착한다고 하자. 1시간 동안 도착하는 버스의 평균 도착 대수가 λ라면

1시간 동안 k개의 버스가 도착할 확률은 어떻게 되는가?

 \rightarrow Poisson distribution

Derivation of Poisson distribution

사건이 일어날 확률은 동일하다고 하자. 그러면 이항분포로 나타낼 수 있음. $B(n,p,r) = \binom{n}{r} p^r (1-p)^{n-r}$

 $\mathsf{O}[\mathsf{III}] p = \lambda/n \mathsf{O}[\mathit{\Box} n \to \infty]$

$$\lim_{n \to \infty} \frac{n!}{(n-r)! r!} \left(\frac{\lambda}{n}\right)^r \left(1 - \frac{\lambda}{n}\right)^{n-r} = \frac{\lambda^r e^{-\lambda}}{r!}$$

Entropy and Information for

Spike train

p[*r*] : action potential 나타나는 rate r 일 확률 < *r* > *T* : action potential이 나타난 개수

- Firing rate 만으로는 spike train 모두 설명하기 어려움. → entropy 도입
- Entropy는 측정 시간이 증가하면 이에 비례하여 증가. → 단위 시간 당 entropy 값 생각 (H)

$$H = -\langle r \rangle T \int_0^\infty d\tau \, p[\tau] \, \log_2(p[\tau] \, \Delta \tau)$$
$$\dot{H} \le -\langle r \rangle \int_0^\infty d\tau \, p[\tau] \log_2(p[\tau] \Delta \tau) \, .$$

위 식은 뉴런끼리 independent할 때만 성립. 뉴런끼리 dependent하면 감소하므로 부등호 성립!

spike sequences of duration $T_s \ll T$ 도입

 T_s continuous variable이지만 resolution Δt 생각 → discrete

B(t): $T_s/\Delta t$ bit binary number

$$\dot{H} = -\frac{1}{T_s} \sum_B P[B] \log_2 P[B], < 0$$
에 의한 엔트로피

 $B(t + T_s) \& B(t)$: correlate

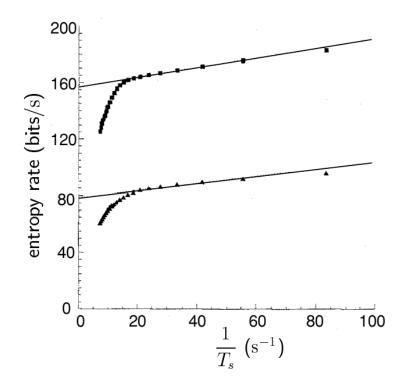
 $B(t + T_s) \& B(t)$ correlation reduce the total-spike train entropy

 T_s too small $\rightarrow B(t + T_s) \& B(t)$ correlate

적당한 T_s 크기 존재

 $T_s \rightarrow \infty$ 라면 true entropy can be measured

$$\frac{1}{T_s} = 0일 때 만나는 점 측정.$$



Mutual information

$$\dot{H}_{\text{noise}} = -\frac{\Delta t}{T} \sum_{t} \left(\frac{1}{T_s} \sum_{B} P[B(t)] \log_2 P[B(t)] \right)$$

여기서 $\frac{\Delta t}{T}$ is the number of different t values being summed.

이전과 마찬가지로
$$rac{1}{T_s}=0$$
일 때 만나는 점 측정하여 계산

Mutual information에서는 Δt 상쇄되지만 여기서는 여전히 엔트로피에 영향 미침.

Summary

Shannonís information theory can be used to determine how much a neural response tells both us and, presumably, the animal in which the neuron lives, about a stimulus. Entropy is a measure of the uncertainty or surprise associated with a stochastic variable, such as a stimulus. Mutual information quantifies the reduction in uncertainty associated with the observation of another variable, such as a response. The mutual information is related to the Kullback-Leibler divergence between two probability distributions. We defined the response and noise entropies for probability distributions of discrete and continuous firing rates, and considered how the information transmitted about a set of stimuli might be optimized.

Finally, we discussed how the information conveyed about dynamic stimuli by spike sequences can be estimated.