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8-1 Entropy and Mutual 

Information



• Quantitatively

• What forms of Neural response are optimal

How much does the neural response tell us 
about the stimulus?



• Information Theory: Quantifying the ability of a coding scheme or a communication channel 

to convey information (stochastic & noisy process)

• Entropy: a measure of the theoretical capacity of a code to convey information

• Mutual information: how much of that capacity is actually used when the code is employed 

to describe a particular set of data

• Symbol: neuronal response / data: stimulus

• Simplified descriptions of the response of a neuron that reduce the number of possible 

symbols that need to be considered

Information Theory



• Large range of different responds → interesting (irregular / unpredictable)

• observing a response spike-count rate 𝑟 with possibility 𝑃 𝑟

• Entropy → surprise: ℎ 𝑃 𝑟 = −𝑙𝑜𝑔2(𝑃 𝑟 )

: 1) decrease function. 2) ℎ 𝑃 𝑟1 𝑃 𝑟2 = ℎ 𝑃 𝑟1 + ℎ(𝑃 𝑟2 ) 3) information bits

• Total Entropy 𝐻 = − 𝑃 𝑟 log2(𝑃 𝑟 )

• Same rate → P[r] = 0 or 1

• Have Two possible rate → 𝑃 𝑟1 = 𝑃 𝑟2 =
1

2

Entropy



• Different stimuli → Neural response different (does it correlate?)

• Mutual info: total response entropy – average response entropy on trials involving 

different stimulus

• 𝐻𝑠 = − 𝑃 𝑟 𝑠 log2 𝑃 𝑟 𝑠 , 𝐻𝑛𝑜𝑖𝑠𝑒 =  𝐻𝑠𝑃 𝑠

• 𝐼𝑚 =  𝑃[𝑟, 𝑠] log2
𝑃[𝑟,𝑠]

𝑃 𝑟 𝑃[𝑠]
symmetric between r,s

• log2 𝑃 𝑠 𝑟 : reduce total stimulus entropy

• 𝐼𝑚 = 1 + 1 − 𝑃𝑋 log2(1 − 𝑃𝑋) + 𝑃𝑋 log2 𝑃𝑋

Mutual information
What we can measure



• Kullback-Leibler divergence

• 𝐷𝐾𝐿 𝑃, 𝑄 =  𝑃 𝑟 log2
𝑃[𝑟]

𝑄[𝑟]

• Normally associated with a distance measure, 𝐷𝐾𝐿 ≥ 0,𝐷𝐾𝐿 = 0 𝑜𝑛𝑙𝑦 𝑎𝑡 𝑃 = 𝑄

• Kullback-Leibler divergence between 𝑃[𝑟, 𝑠] 𝑃 𝑟 𝑃[𝑠]

Mutual information



• 𝐻 = − 𝑝 𝑟 ∆𝑟𝑙𝑜𝑔2 𝑝 𝑟 ∆𝑟 = − 𝑝 𝑟 ∆𝑟𝑙𝑜𝑔2 𝑝 𝑟 − log2 ∆𝑟

• ∆𝑟 → 0,𝐻 → ∞ : continuous variable measured with perfect accuracy ∞ entropy

• lim
∆𝑟→0

(𝐻 + log2 ∆𝑟) = − 𝑑𝑟 𝑝 𝑟 log2 𝑝[𝑟] ∆𝑟: limit of resolution

• lim
∆𝑟→0

𝐻𝑛𝑜𝑖𝑠𝑒 + log2 ∆𝑟 =  𝑑𝑠  𝑑𝑟 𝑝 𝑠 𝑝 𝑟 𝑠 log2 𝑝[𝑟|𝑠]

• 𝐼𝑚 =  𝑑𝑠  𝑑𝑟 𝑝 𝑠 𝑝 𝑟 𝑠 log2
𝑝[𝑟|𝑠]

𝑝[𝑟]

Continuous variables



8-2 Information and Entropy 

Maximization



• Maximum firing rate 𝑟𝑚

•  0
𝑟𝑚 𝑑𝑟 𝑝[𝑟] = 1, maximize − 0

𝑟𝑚 𝑑𝑟 𝑝 𝑟 log2 𝑝[𝑟] → Lagrange multiplier

• 𝑝 𝑟 =
1

𝑟𝑚
→  H = log2

𝑟𝑚

∆𝑟
Let 𝑟 = 𝑓(𝑠)

• 𝑝 𝑟 |∆𝑟| =
𝑓 𝑠+∆𝑠 −𝑓 𝑠

𝑟𝑚
= 𝑝[𝑠]∆𝑠 , 

𝑑𝑓

𝑑𝑠
= 𝑟𝑚𝑝 𝑠

• 𝑓 𝑠 = 𝑟𝑚  𝑠
𝑠𝑚 𝑑𝑠′𝑝[𝑠′]

Entropy maximization for a Single neuron



• Use vector  𝑟 = (𝑟1, ⋯ , 𝑟𝑁)

• 𝐻 = − 𝑑 𝑟 𝑝  𝑟 log2 𝑝  𝑟 − 𝑁𝑙𝑜𝑔2∆𝑟

• Consider    p[ra] =   𝑏≠𝑎 𝑑𝑟𝑏 𝑝[ 𝑟]

• 𝐻𝑎 = − 𝑑 𝑟 𝑝[  𝑟] log2 𝑝 𝑟𝑎 − log2 ∆𝑟 , H ≤  𝑎𝐻𝑎

•  𝑎𝐻𝑎 − 𝐻 =  𝑑 𝑟 𝑝[ 𝑟] log2
𝑝[  𝑟]

 𝑎 𝑝 [𝑟𝑎]
: KL divergence

Populations of Neurons



• Entropy difference → redundancy

• To achieve Maximum population-response entropy..

1) Individual neurons must response independently

2) Have response probabilities that are optimized for whatever constraints are imposed

• 𝑝 𝑟𝑎 𝑖𝑑𝑒𝑛𝑡𝑖𝑐𝑎𝑙

Populations of Neurons



• Covariance matrix :  𝑄𝑎𝑏 =  𝑑 𝑟 𝑝  𝑟 𝑟𝑎 − 𝑟 𝑟𝑏 − 𝑟 = 𝜎𝑟
2𝛿𝑎𝑏

• Fix the covariance matrix, maximizes the entropy only if the statistics of the 

responses are gaussian

Populations of Neurons



• Receptive field in Retina, LGN, primary visual cortex

• Maximize the amount of information that the associated neural responds convey 

about natural visual scenes in the presence of noise

• Only represent neural responds 

Application to Retinal Ganglion Cell Receptive 
Field



• 𝐿 𝑡 =  0
∞
𝑑𝜏  𝑑  𝑥 𝐷  𝑥, 𝜏 𝑠(  𝑥, 𝑡 − 𝜏) : linear estimation of the response of visual 

neuron.

• Contrast function 𝑠(  𝑥, 𝑡),    space time receptive field 𝐷  𝑥, 𝜏 = 𝐷𝑠  𝑥 𝐷𝑡(𝜏)

• 𝐿𝑠 =  𝑑  𝑥 𝐷𝑠  𝑥 𝑠𝑠(  𝑥) 𝐿𝑡 𝑡 =  0
∞
𝑑𝜏 𝐷𝑡 𝜏 𝑠𝑡(𝑡 − 𝜏)

• D: information carrying capacity

• All locations and directions are equivalent → same spatial structure

Application to Retinal Ganglion Cell Receptive 
Field



• 𝐿  𝑎 =  𝑑  𝑥 𝐷𝑠  𝑥 −  𝑎 𝑠𝑠(  𝑥)

• We proceed as if there were a neuron corresponding to every continuous value of  𝑎. 

This allows us to treat L(  𝑎) as a function of  𝑎 and to replace sums over neurons with 

integrals over  𝑎.

Application to Retinal Ganglion Cell Receptive 
Field Centered at  𝑎



Spike Train and Poisson 

distribution



• A sequence of recorded times at which a neuron fires an action potential

• 100mV over 1~2ms →  each time can be considered by a single point

Spike train

Example of a spike train. Graph A shows the recorded 

stimulus and graph B shows the recorded actions 

potentials during the stimulus.



• Delta function

Spike train

Average number of spike trains per time

 
−𝜀

𝜀

𝛿 𝑥 𝑑𝑥 = 1



• discrete probability distribution that expresses the probability of a given number 

of events occurring in a fixed interval of time or space if these events occur with a 

known constant mean rate and independently of the time since the last event.

Poisson Distribution

Average rate: r



Example

버스가랜덤하게도착한다고하자.

1시간동안도착하는버스의평균도착대수가 𝜆라면

1시간동안 𝑘개의버스가도착할확률은어떻게되는가?

→ Poisson distribution



Derivation of Poisson distribution

사건이일어날확률은동일하다고하자. 그러면이항분포로나타낼수있음.

𝐵 𝑛, 𝑝, 𝑟 =
𝑛
𝑟

𝑝𝑟 1 − 𝑝 𝑛−𝑟

이때 𝑝 = 𝜆/𝑛이고 𝑛 → ∞

lim
𝑛→∞

𝑛!

𝑛 − 𝑟 ! 𝑟!

𝜆

𝑛

𝑟

1 −
𝜆

𝑛

𝑛−𝑟

=
𝜆𝑟𝑒−𝜆

𝑟!



Entropy and Information for 

Spike train



• Firing rate 만으로는 spike train 모두설명하기어려움. → entropy 도입

• Entropy는측정시간이증가하면이에비례하여증가. → 단위시간당 entropy 값

생각 (  𝐻)

𝐻 = − 𝑟 𝑇 
0

∞

𝑑𝜏 𝑝 𝜏 log2(𝑝 𝜏 ∆𝜏)

Entropy rate 𝑝[𝑟] : action potential 나타나는 rate r 일확률
< 𝑟 > 𝑇 : action potential이나타난개수

위식은뉴런끼리 independent할때만성립.

뉴런끼리 dependent하면감소하므로부등호성립!



Entropy rate



spike sequences of duration 𝑇𝑠 ≪ 𝑇도입

𝑇𝑠 continuous variable이지만 resolution ∆𝑡생각→ discrete

B(t): 𝑇𝑠/∆𝑡 bit binary number

𝐵 𝑡 + 𝑇𝑠 & 𝐵 𝑡 ∶ correlate

Entropy rate

< 이에의한엔트로피



𝐵 𝑡 + 𝑇𝑠 & 𝐵 𝑡 correlation reduce the total-spike train entropy

𝑇𝑠 too small → 𝐵 𝑡 + 𝑇𝑠 & 𝐵 𝑡 correlate

적당한 𝑇𝑠 크기존재

𝑇𝑠 → ∞라면 true entropy can be measured

1

𝑇𝑠
= 0일때만나는점측정.

Entropy rate



Mutual information

여기서
Δ𝑡

𝑇
is the number of different t values being summed.

이전과마찬가지로
1

𝑇𝑠
= 0일때만나는점측정하여계산

Mutual information에서는 Δ𝑡상쇄되지만여기서는여전히엔트로피에영향미침.

Entropy rate



Shannonís information theory can be used to determine how much a neural response tells both us and, 

presumably, the animal in which the neuron lives, about a stimulus. Entropy is a measure of the 

uncertainty or surprise associated with a stochastic variable, such as a stimulus. Mutual information 

quantifies the reduction in uncertainty associated with the observation of another variable, such as a 

response. The mutual information is related to the Kullback-Leibler divergence between two probability 

distributions. We defined the response and noise entropies for probability distributions of discrete and 

continuous firing rates, and considered how the information transmitted about a set of stimuli might be 

optimized.

Finally, we discussed how the information conveyed about dynamic stimuli by spike sequences can be 

estimated.

Summary


